1

0682: Review sheet for exam on November 10

November 5, 2020

Overview

For the final, you should cover all of the following:

2

The items on this review sheet.

All of the reading assignments on the course website that are marked as “NOTES” on the syllabus,
and the notes under “Notes” tab. You are not responsible for the material in other documents unless
specifically stated below.

Material from all of the homework problem sets.

Specific material

Here are the topics you should understand.

The difference between fine-tuning, pre-training, and “training from scratch”.
Why do you need to have a hold-out validation set?

Know the formal definition of supervised learning. This involves having a training set of examples
(z4,y;) drawn from a specific distribution, where z;’s are the data vectors and the y;s are the class
labels. Then you are given a test set of x;’s and asked to estimate the class label.

What is overfitting, and why is it bad? How can you tell if your model is overfitted? What about
underfitting?

What are the common methods to prevent the model from overfitting and/or underfitting?

What is cross validation? When would you consider using cross validation, and what are the pros and
cons compared to using a single validation set?

For k-nearest neighbors (k-NN) classifier, how would your decide on the proper value of k?

Compare a fully connected layer and a convolutional layer. Mention at least one advantage and one
disadvantage of each.

What are the advantages and disadvantages of learned representations compared with hand-crafted
representations (SIFT, HOG, etc.)?

Differences between regular neural networks and convolutional neural networks. Main justifications for
CNNs over regular neural networks. These include



— the idea that many useful features will be local in the sense that they will only be functions of small
areas of the input. While in principle, a standard neural net can learn local features, learning
can be faster and more efficient by forcing features to be local. It also dramatically reduces the
number of parameters to be learned, which leads to effective training with smaller training sets.

— the idea that if a feature is useful at one position in an image, it is likely to be useful at other
positions in the image. This leads to the idea of having many, many copies of the same feature
spread over the image, which can be implemented with convolution. This idea has several ad-
vantages. First of all, a feature can be learned by combining data from many different parts of
the image through parameter sharing. Second, we can learn a feature for a particular part of the
image even if we never saw the feature in that location during training. That means we can get
away with much less training data.

What are stride, padding, and receptive field?

A large receptive field is important for many computer vision task such as segmentation. Name at
least two methods how one can increase the receptive field of a neural network.

A network’s input image is of size h x w. After the first layer the feature map is of size h/2 x w/2.
Which operations can lead to this decreased feature map (mention at least two)?

Given a 7 x 7 input image, a filter of size 3 x 3 is applied with stride 1 and padding of 1 pixel. What
is the size of the output?

Know the key properties of the well-studied network architectures (e.g. ResNet, GoogLeNet).

What is the difference between gradient descent, stochastic gradient descent (SGD), and mini-batch
SGD.

Know how to compute numerical gradient of a function, and know why the two-sided method is
preferred.

When computing numerical gradient of a function, what could go wrong if the chosen epsilon value is
too large or too small?

What are the common data pre-processing options on input data to neural networks? Know what the
motivation is behind each of those operations.

What is the purpose of having pooling layers in neural networks? Is max pooling a linear operation?

Write down the equation of two commonly used activation functions and their derivatives with respect
to their input arguments.

Write down the negative log loss with its derivative. Explain the intuition behind the negative log loss.
What is the penalty if we assign zero probability to the correct answer?

What is the 0-1 loss (also called ’classification loss’)? What’s wrong with trying to train a neural
network using the 0-1 loss, or ’classification loss’?

Know how to derive the SVM and Softmax gradients.

Optimization: give two possible update rules for the gradient. What kinds of problems can occur with
the standard update that some rules are trying to prevent?

What are vanishing gradients and what are possible reasons for those?



e Different types of non-linearities (ReLU (rectified linear unit), leaky ReL.U, tanh, logistic), and how to
make the choice in practice. Understand the advantages and disadvantages of each type of non-linearity.
Also, make sure you understand why we need non-linearities in the first place. For example, a network
built out of only linear layers can only compute linear functions. This is clear if you write the whole
function of the network down. A whole sequence of matrix multiplies is equivalent to another matrix
multiple, which means the whole network is linear. Note that a linear network can only compute linear
classification boundaries. Thus, you could never separate classes if you can’t draw a linear boundary
between them.

e What is a “dead ReLU”? How can you tell if your model is suffering from the problem, and how can
you deal with it? How can a dead ReLLU come back to life?

e Loss functions (negative log loss, multi-class SVM loss, 12 loss, etc.), and how to make the choice in
practice.

e Make up your own loss. Can you name an appropriate application and say something good or bad
about your loss for it?

e Know what data loss, regularization loss, and total loss are.

e The motivation behind batch normalization, and why it solves the problem. Know the procedure
for training time: estimate mini-batch mean and standard deviation, subtract off mean estimate and
divide by standard deviation estimate.

e How can a convolutional layer be implemented as a fully connected layer? How can a fully connected
layer be implemented as a convolutional layer?

e What is the purpose of regularization? What’s the difference between L2 and L1 regularization? Can
you come up with another type of regularization?

e Understand how to address the following situations during training: training loss is equal to validation
loss (underfitting); training loss is much much lower than validation loss (overfitting); training loss
won’t go down (bad initialization or learning rate too low); training loss goes up (learning rate too
high).

e What the problem of disappearing gradients is, and how to deal with it.

e Can two neural networks that have different arrangements of weights produce the exact same function?
Explain how to take a neural network and rearrange the weights to make an equivalent neural network
whose weight matrices are different. Here is how to do this. Consider the first hidden layer of a
standard neural network, like the kind in assignment 1 used to do CIFAR classification. Recall that
the weights connected to each hidden unit can be shown as an “image”, to visualize what the weights
are doing. Let’s call each of these sets of hidden weights a “filter”. Furthermore, call the first filter
in our first layer A and the second filter B. Now imagine another neural network in which we have
swapped the position (in the weight matrix W) of filters A and B. That is, we have made filter A the
second filter and filter B the first filter. Now, this new network is computing the same set of functions
at the first layer as the original network; it is just that they are in a different order. To make sure
that the two networks are the same, we would then have to swap the next layers weights corresponding
to the two filters that were swapped. By shuffling the filters in any neural network, and making an
equivalent change to the higher level weights that use the outputs of these filters, we can produce a
large number of networks that compute ezactly the same function of the input.

e Be able to do show that the derivative of the logistic is f(z)(1 — f(x)). Why is this a useful thing to
do? Because we already computed f(z) during the forward pass, so it is very cheap to compute the
backward pass.



Be able to do the simple examples of backpropagation from class with pencil and paper.

How to handle branches in backpropagation. Note that you should be able to handle branches in both
directions, where one value is copied many times to produce inputs to many other functions, or where
many values are put through a single function to produce a single output.

Understand how to justify efficient implementations of backpropagation. For example, if the Jacobian
is N x N, how can I get away with only storing N of its values sometimes? A good example is the
derivative of the ReLU function. Since each output of the ReLU is only a function of a single input,
all of the “cross derivatives” (element i of input with respect to element j of output) are all 0. Thus,
there is no need to store them.

Why could the accuracy on the training set go up significantly when there is a very small relative
change in the loss function of a network, especially right after initialization? Answer: when training
begins, most of the output values may have nearly equal probability. Thus, a very small increase of
the probability of the correct class may render the probability of the correct class higher than all of
the others. Thus, the accuracy would go up despite small changes in the probabilities.

Suppose I initialize a neural network with small random Gaussian weights. If I have 100 classes, what
do T expect the data loss to be after the first forward pass (before the weights have been adapted at
all), and why?

Definition of over-fitting. Why it is a problem, how to tell if you have the issue of over-fitting, and
how to deal with it.

Name one problem with grid search for exploring hyperparameter settings. Name one advantage
relative to random sampling of hyperparameter settings. Understand the professor’s suggestions for
fixing these problems: a) Use a non-square grid (like a hexagonal grid) to better cover the space of
hyperparameters settings. b) Rotate the grid so that there are move diverse samples of the individual
hyperparameter settings. This is important if one of the hyperparameters is relatively unimportant.

How can over-fitting be used for debugging in practice? Answer: you can test whether your network
can find a way to make the training error zero for a small data set and 0 regularization. If your network
can’t do this, there may be a problem with the backprop.

Be able to take the derivative of a scalar/vector/matrix w.r.t. a scalar/vector/matrix. What are the
shapes of the resulting arrays?

The difference between model parameters and hyper-parameters.

Strategies for searching optimal hyper-parameters: random search, grid search, and the ”rotated grid
search” idea discussed in class.

What is a possible cause if training loss explodes?

What is dropout, and how is it related to the concept of model ensembles? Answer: dropout can
be thought of as training a separate network for each separate forward pass. At test time, this can
be thought of as taking the average of a very large number of different networks, which is a massive
ensemble. Also, you should understand why you have to multiply by “p”, the probability of dropout,
at test time, to correct for the fact that no nodes are dropped out.

Know how to implement “inverted dropout”, and why it is usually preferred.

Understand multiple ways to visualize the meaning of internal nodes of neural nets. Examples include
1) occluding parts of the inputs, 2) Visualizing patches which maximize the activity of a particular
unit.



What is the problem with randomly initializing all layers with the same Gaussian, even if those layers
are different sizes? How do Xavier initialization and improved Xavier initialization (He et al. 2015)
solve the problem? You should know how to implement them.

Describe what a recurrent neural network (RNN) is and how it is different from a CNN. Give an
example of an application where RNN is a good choice. In that example, what are the input and
output of the network?

What is a LSTM and how is it different from a vanilla RNN? What are the potential issues of RNNs
that LSTMs are designed to address?

What are the purposes of classification, localization, object detection, and instance segmentation?
What are the differences between them?

How can we train a neural network for the task of object detection? What do we need to prepare
(images and ground-truth)? What are the losses (classification and regression)?

Describe differences between RCNN, Fast-RCNN, Faster-RCNN. Which of the models are the fastest,
and why?

What are the evaluation metrics for object detection? (Need to describe by IoU and precision-recall
curve)

Can you explain how to train GANs? What are the two networks that you have to train, and how do
you train them jointly?

How do you visualize what is going on inside ConvNets? (e.g. Nearest Neighbors, Dimensionality
Reduction, Gradient Ascent) Can you describe more details how each visualization tool works?

What is a Gram matrix for a given layer of a CNN and a given image? How do you compute it?
Describe one use of Gram matrix discussed in the class.

Describe how style transfer works. Answer: Measure the Gram matrix of one image and the feature
values from another image. Now find the image (via gradient descent) that matches both the Gram
matrix and the feature vector.

Give some examples of the character-prediction features learned by an RNN when it is trained to
predict the next characters. Answers: 1) When you are inside a quotation. 2) When you are inside a
comment. 3) When it has been a long time since you saw the last carriage return character.

What is style transfer? Describe the input and the output.

Describe one way to generate a saliency map given an image and a model. You can think of a saliency
map as an identification of the pixels which had the largest role in classification of a particular image.

What is an adversarial example? How to generate one?

Write down the minimax objective function for training a GAN. The annotation: D is the discriminator.
G is the generator. 04,0, are the parameters. pqqtq,p. is the distribution of data and noise.

Is it possible to “attack” a network with an adversarial example? On the other hand, how can we
“defend” the adversarial attack?

Consider a recurrent neural network (RNN) designed to predict the next character in a stream of text.
Let’s assume that the network has one hidden layer. Describe the 3 sets of parameters that are learned
in such a network: W,: the linear transformation (or matrix) from the input representation to the
first hidden layer. Wjp,: The linear transformation (or matrix) from the hidden layer at the previous
time step ¢ — 1 to the current time step ¢. Wjy: The linear transformation from the current hidden
state to the scores for each possible output character.



e What is a word embedding?

e What is the difference between traditional word embeddings like Word2Vec and new so-call contextual
embeddings, like ELMo? Answer: Word2Vec always gives the same representation to a string like
'bank’, no matter what context it is used in. ELMo gives a different embedding for a word depending
upon the sentence in which it occurs, which tends to give much more accurate information about the
semantics.



